
AutoEval and Missplel: Two Generic Tools for
Automatic Evaluation

Johnny Bigert, Linus Ericson, Antoine Solis
Department of Numerical Analysis and Computer Science

Royal Institute of Technology, Sweden
Contact: johnny@kth.se

Abstract

We describe two freeware programs
for automatic evaluation. The first,
AutoEval, greatly simplifies the data
gathering, processing and counting of-
ten involved in an evaluation. To
this end, AutoEval includes a simple
and powerful script language to de-
scribe the evaluation task to be car-
ried out. The second program is called
Missplel. It introduces human-like
spelling and grammar errors into text.
A typical application is evaluation of
NLP system performance on noisy in-
put, in order to establish the robust-
ness of the system. An evaluation of
the quality of the produced errors has
also been conducted.

1 Introduction

Manual evaluation of NLP systems is time-
consuming and tedious. When assessing the
overall performance of an NLP system, we are
also concerned with the performance of the in-
dividual components. Many components will
imply many evaluations. Furthermore, during
the development cycle of a system, the evalu-
ations may have to be repeated a large number
of times. Sometimes, a single modification of
a single component may be detrimental to over-
all system performance. Facing the possibility of
numerous evaluations per component, we realize
that manual evaluation will be very demanding.
Automatic evaluation is often a good com-

plement to manual evaluation. Naturally, post-

processing of manual evaluations, such as count-
ing the number of correct answers, is suitable
for automation. Implementation of such repet-
itive and monotonous tasks is carried out in
evaluation of almost all NLP systems. To sup-
port the realization of these evaluations, we have
constructed a program for automatic evaluation
called AutoEval. This software handles all
parts frequent in evaluation, such as input and
output file handling and data storage, and fur-
ther simplifies the data processing by providing
a simple but powerful script language.
Automatic evaluation is not limited to the

gathering and processing of data. Truly auto-
matic evaluation does not require manual inter-
vention. To this end, we have developed an-
other program, called Missplel, which intro-
duces human-like errors into correct text. Using
this, the performance of an NLP system can be
measured under the strain of ill-formed input.
The system’s ability to cope with noisy input is
a measure of its robustness. Missplel has also
been successfully used for automatic evaluation
of spelling and grammar checkers.
Both programs are freeware and the source

code is available from the web site (Bigert,
2003).

2 AutoEval

Evaluation is an integral part of NLP system de-
velopment. Normally, the system consists of sev-
eral components, where the performance of each
component directly influences the performance
of the overall system. Thus, the performance
of the components needs to be evaluated. All
evaluation has several parts in common: data

Script example:

(1) field(file, "\t", "\n", :word, :tag);
(2) ++$tot;
(3) ++$(:tag);

Explanation:

word, tag are variables holding a word, e.g. car and a tag such as NN1.

field is a function that splits a file into tokens. Here, tokens are separated with a
tab (\t) and tokens are read until a newline (\n) is found. The first token found
is assigned to the variable word and the second token is assigned to tag.

$ retrieves a counter (integer) variable

++ increments a counter by one

:tag retrieves the content of the string variable tag

Figure 1: AutoEval example. If the current input line reads ’car NN1’, the number of rows will
be incremented by one at line (2) and the counter named NN1 (which is the content of tag) will be
incremented by one at line (3).

input, data storage and processing and finally,
data output. To simplify evaluation of numer-
ous sources of NLP data, we have construc-
ted a highly generic evaluation program, named
AutoEval. The strength of AutoEval is ex-
actly the points given above: simple input read-
ing, automatic data storage, powerful processing
of data using an extendible script language, as
well as easy output of data.

2.1 Related work

Several projects have been devoted to NLP sys-
tem evaluation, such as the EAGLES project
(King and others, 1995), the ELSE project (Ra-
jman and others, 1999) and the DiET project
(Netter and others, 1998). Most of the evalu-
ation projects deal mainly with evaluation meth-
odology, even though evaluation software has of-
ten been developed to apply the methodology.
For example, a PoS tag test bed was developed
in the ELSE project and a spelling checker test
bed was developed in the DiET project. A gen-
eral tool as AutoEval would have greatly sim-
plified the implementation of such test beds. Us-
ing AutoEval, creating a test bed is limited to
writing a simple script describing the evaluation
task.
Despite the large amount of existing evalu-

ation software, we have not been able to find any
previous reports on truly generic software sys-
tems for evaluation. The large amount of eval-
uation software further supports the need for a
generic tool like AutoEval.

2.2 Features

AutoEval is a framework for automatic eval-
uation, written in C++. The main benefits of
this generic evaluation system are the automatic
handling of input and output and the script lan-
guage that allows us to easily express complex
evaluation tasks.
When evaluating an NLP system usingAuto-

Eval, the evaluation task is described in an
XML configuration file. The configuration file
defines what input files to be used and what
format they are given in. Currently, AutoEval
supports plain-text and XML files. The format
of the data is defined using regular expressions.
The system handles any number of input files.
The evaluation to be carried out is defined by

a simple script language. Figure 1 provides an
example of the script language. The three ex-
ample lines are executed for each line of the in-
put file. In line (1), the handle file identifies a
row-based text file. The function field extracts
tokens from the input file. The extracted tokens

are assigned to variables that are later used for
processing of the data. When the input file is de-
pleted, the field function will fail and the data
processing is completed. Line (2) increments a
counter tot every time a new line is processed
and will thus count the number of rows in the
input file. Line (3) increments a counter variable
that has the same name as the tag read. That
is, if the tag read was e.g. NN1, the counter
variable named NN1 will be incremented by one.
This provides an extreme flexibility as the script
can create variables depending on the input. To
further simplify variable processing and access,
variables can be gathered in named groups. Nor-
mally, to access the string variable var, we write
:var. To access data in a group grp, we would
write grp:var.
The script language permits overloading of

function names. That is, the same function
name with different number of parameters will
result in different function calls. If the basic set
of functions is not sufficient for your task, you
can easily add any C++ function of your own
to the system. Thus, there is no limit to the
expressiveness of the script language. Further-
more, common tasks (e.g. calculating precision
and recall) that you use often can be collected in
repository files where they can be accessed from
all configuration files.
The output is written in XML. The user can

choose to gather related output information un-
der XML sections. To simplify output, the user
can choose to output all variables in a given
group. For example, in Figure 1, we can out-
put all tag names and their corresponding fre-
quencies without explicitly providing the PoS
tag names, but only the group containing the
variables (in this case the default group called
global). The system can handle any number of
output files.

AutoEval processes about 100 000 function
calls (e.g. field) per second, or about 2000 rows
(words) of input per second for the application
in Section 4.

2.3 Usage

A short explanation of the use of AutoEval is
given below. An example of the usage is given

in Figure 1.

Prerequisites: (optional) a repository of func-
tions to be used in the configuration script.

Input: a configuration file specifying the eval-
uation to be carried out. The input and
output file names are provided in the con-
figuration file.

Output: The results of the evaluation are given
in XML. The data is divided into sections
as specified by the configuration.

3 Missplel

Resources annotated with information on
spelling and grammatical errors are rare and
time-consuming to produce. Furthermore, it
may be difficult to detect all errors and classify
the errors found. Nevertheless, these resources
are often useful when evaluating spelling check-
ers and grammar checking systems as well as
other NLP system performance under the influ-
ence of erroneous or noisy input data.
Presumably, conventional corpus data is well

proof read and scrutinized and thus, it is as-
sumed not to contain errors. Given the corpus
data, we will use an error introducing software
calledMissplel to introduce spelling and gram-
matical errors. This will provide us with the
exact location and type of all errors in the file.
This section reports on the features and imple-
mentation of Missplel.

3.1 Related Work

Several sources report on software used to in-
troduce errors to existing text. Most of these
deal mainly with performance errors or so-called
Damerau-type errors, i.e. insertion, deletion or
substitution of a letter or transposition of two
letters (Damerau, 1964).
For example, Grudin (1981) has conduc-

ted a study of Damerau-type errors and
from that, implemented an error generator.
Agirre et al. (1998) briefly describe AntiSpell
that simulates spelling errors of Damerau type.
Another error introducing software, ErrGen,
has been implemented in the TEMAA frame-
work (Maegaard and others, 1997). ErrGen

uses regular expressions at letter level to intro-
duce errors, which allows the user to introduce
Damerau-type errors as well as many compet-
ence errors, such as sound-alike errors (receive,
recieve) and erroneously doubled consonants.

3.2 Features

The main objective in the development of Mis-
splel was language and PoS tag set independ-
ency as well as maximum flexibility and con-
figurability. To ensure language and PoS tag
independence, the language is defined by a dic-
tionary file containing word, PoS tag and lemma
information. The character set and keyboard
layout are defined by a separate file containing
a confusion matrix, that is, a matrix holding the
probability that one key is pressed instead of an-
other.

Missplel introduces most types of spelling
errors produced by human writers. It intro-
duces performance errors and competence er-
rors at both letter and word level by using four
main modules: Damerau, SplitCompound,
SoundError and SyntaxError. The mod-
ules can be enabled or disabled independently.
For each module, we can specify an error prob-
ability. For example, if the Damerau module
is set to a 10% probability of introducing an er-
ror, about 10% of the words in the text will be
misspelled with Damerau-type spelling errors.
The Missplel configuration file, provided in

XML, offers fine-grained control of the errors to
be introduced. Most values in the configuration
file will assume a default value if not provided.
The format of all input and output files, includ-
ing the dictionary file, is configurable by the user
via settings using e.g. regular expressions.
Normally, misspelling cat to car would not be

detected by a spelling or grammar checker. In
Missplel, you can choose not to allow a word to
be misspelled into an existing word or, if you al-
low existing words, choose only words that have
a different PoS tag in the dictionary. This in-
formation (whether the error resulted in an ex-
isting word and if the tag changed or not) can
be included in the output as shown in Figure 2.

The Damerau Module introduces perform-

Letters NN2
would VM0
be VBI
welcome AJ0-NN1

Litters NN2 damerau/wordexist-notagchange
would VM0 ok
bee NN1 sound/wordexist-tagchange
welcmoe ERR damerau/nowordexist-tagchange

Figure 2: Missplel example. The first part
is the input consisting of row-based word/tag
pairs. The second part is the Misspleled out-
put, where the third column describes the intro-
duced error.

ance errors due to keyboard mistypes (e.g.
wellcmoe), often referred to as Damerau-
type errors. The individual probabilities of
insertion, deletion, substitution and trans-
position can be defined in the configuration
and are by default equal between the four
types. In the case of insertion and substitu-
tion, we need a probability of confusing one
letter for another. This confusion matrix is
provided in a separate file.

The Split Compound Module introduces
erroneously split compounds. These errors
are common in compounded languages
like Swedish or German and may alter the
semantics of the sentence. As an example
in Swedish, kycklinglever (chicken liver)
differs in meaning from kyckling lever
(chicken is alive). A multitude of settings
are available to control the properties (e.g.
length and tag) of the first and second
element of the split compound.

The Sound Error Module introduces errors
the same way as ErrGen, that is, by using
regular expressions at letter level. In Mis-
splel, each rule has an individual probab-
ility of being invoked. This allows common
spelling mistakes to be introduced more of-
ten. Using the regular expressions, many
competence errors can easily be introduced
(e.g. misspelling bee for be).

The Syntax Error Module introduces er-
rors using regular expressions at both letter

and word/tag level. For example, the user
can form new words by modifying the tag
of a word. This allows easy introduction
of feature agreement errors (he are) and
verb tense errors (stop shout). You can
also change the word order, double words
or remove words.

The foremost problems with resources annot-
ated with errors are, for most languages, avail-
ability and the size of the resources. Using Mis-
splel, the only requirement is a resource annot-
ated with word and PoS tag information, avail-
able for most languages. From this, we can cre-
ate an unlimited number of texts with annotated
and categorized errors.

Missplel uses randomization when introdu-
cing errors into a text to be used for evaluation
of the performance of an NLP system. To elim-
inate the influence of chance on the outcome
of the evaluation, we may run the software re-
peatedly (say, n times) to obtain any number of
erroneous texts from the same original text. The
average performance on all texts will provide us
with a reliable estimate on the real performance.
The standard deviation will provide a clue to the
stability or robustness of the system, i.e., the in-
herent ability of the NLP system to cope with
various input. Low standard deviation would
imply that the average is a good estimate on
the real performance. Note here that the num-
ber of iterations n does not depend on the size
of the annotated resource.

Missplel processes about 1000 rows (words)
of input per second for the application in Sec-
tion 4.

3.3 Usage

A short explanation of the use of Missplel is
given below. An example of the usage is given
in Figure 2.

Prerequisites: a row-based dictionary file,
with each row containing a word, a PoS tag
and a lemma.

Input: a configuration file specifying the error
types to be introduced and a row-based
data file with word and PoS tag data.

Output: a copy of the input file with errors
introduced and an additional column that
specifies the errors. Also, an XML file with
more detailed information on the errors is
produced.

3.4 Evaluation

An evaluation of Missplel is being conducted
to establish the quality of the produced errors.
The main idea is to let human subjects decide
whether a particular error is produced by Mis-
splel or a human. To this end, we used 15
rules for the SoundError module and 15 rules
for the SyntaxError module. The Damerau
and SplitCompound modules were also used.
The evaluation was divided into two parts. In

the first part, the human was presented twenty
independent sentences randomly chosen, each
containing a highlighted error. The task was
to decide whether the error was produced by
a human or not. The second part consisted of
two versions of the same text, both containing
several errors. One of the versions contained
errors introduced by Missplel, the other con-
tained genuine errors produced by the writer of
the original text. The task was to decide which
text contained the errors produced by a human.
To date, 42 human subjects have participated

in the evaluation. In the first part, 62% of their
guesses were correct. That is, in 62% of the sen-
tences, the user was able to correctly guess that
Missplel produced the error or correctly guess
that a human produced the error. This figure
should be compared to the 50% level, where the
user’s guess is no better than a random guess.
Thus, 62% is relatively close to the ideal result.
In the second part, 52% (22 of 42) guessed cor-
rectly which text was produced by Missplel.
This is surprisingly close to the 50% random
guess, which seems promising.
With more rules in the SoundError and

SyntaxError module, the ability to introduce
human-like errors increases. Despite the limited
amount of rules used, the results are promising.
The most surprising result of this preliminary
evaluation is that the second part appears more
difficult than the first. Normally, context would
give the user a better picture of the “author”,

i.e., Missplel in half of the texts. We recognize
that the number of participants in the evalu-
ation is too low to draw any general conclusions
and include the figures here as an indication of
the performance of the error introducer.

4 Applications

Clearly, the field of application of AutoEval is
very broad. It has been used e.g. for the evalu-
ation of robustness and performance of parsers
and taggers (see below) as well as in a thorough
investigation on ensemble and majority voting
in PoS tagging (Sjöbergh, 2003).

4.1 Robustness of NLP Systems

Here, we present an evaluation methodology
in which both Missplel and AutoEval are
used. The details are described in (Bigert et
al., 2003).
Unrestricted text will inevitably contain

spelling and grammatical errors. Normally, PoS
taggers and parsers are foremost designed to
process correct text, and errors in the input to
an NLP system will affect its behavior. If an
NLP system can successfully cope with noisy
and ill-formed input, we say that it is robust.
Naturally, the performance will be affected by
the errors. For example, when the context be-
comes increasingly noisy, the analysis becomes
more difficult, even for a human. Thus, if we
are given e.g. a parser, we want to determine
the rate of degradation of the performance when
faced with increasingly noisy text. Furthermore,
we may also determine which tagger is the most
robust in combination with the parser.
To this end, we use Missplel to introduce

different levels of errors. For example, if we
introduce errors in 10% of the words, a ro-
bust system should obtain a performance loss
of around 10%. In the mentioned paper, we
investigated the performance degradation of a
Swedish shallow parser (Knutsson et al., 2003).
Using AutoEval, we gathered detailed inform-
ation on degradation of each phrase type (e.g.
noun phrase, prepositional phrase) as well as
tagger and parser overall performance. To elim-
inate the influence of chance, we applied Mis-
splel 10 times per error level. From the res-

ults, we used AutoEval to calculate the av-
erage performance and the standard deviation.
The AutoEval script contained 7 lines of pro-
cessing code (51 function calls).

5 Conclusions

We have presented two generic tools for auto-
matic evaluation. The source code of the pro-
grams is freely available from the web site (Bi-
gert, 2003). The first program, AutoEval, is
constructed to simplify the processing of data
during an evaluation. The second program,
Missplel, is used to introduce errors into text.
We constructed an evaluation in order to assess
the quality of the produced errors from Mis-
splel. The results showed that the introduced
errors are difficult to distinguish from authentic
errors.

AutoEval and Missplel have successfully
been used in several evaluation tasks. Based
on our own experience of the two programs, we
conclude that they greatly simplify the task of
evaluation.

References

E. Agirre, K. Gojenola, K. Sarasola, and A. Voutil-
ainen. 1998. Towards a single proposal in spelling
correction. In Proceedings of ACL 1998, pages 22–
28, San Francisco, California. Morgan Kaufmann
Publishers.

J. Bigert, O. Knutsson, and J. Sjöbergh. 2003. Auto-
matic evaluation of robustness and degradation in
tagging and parsing. In Proceedings of RANLP
2003.

J. Bigert. 2003. The AutoEval and Mis-
splel webpage. http://www.nada.kth.se/theory/
humanlang/tools.html.

F. Damerau. 1964. A technique for computer detec-
tion and correction of spelling errors. Communic-
ations of the ACM, 7(3):171–176.

J. Grudin. 1981. The organization of serial order
in typing. Ph.D. thesis, Univ. of California, San
Diego.

M. King et al. 1995. EAGLES – evaluation of nat-
ural language processing systems. http://issco-
www.unige.ch/ewg95.

O. Knutsson, J. Bigert, and V. Kann. 2003. A ro-
bust shallow parser for Swedish. In Proceedings of
Nodalida 2003, Reykjavik, Iceland.

B. Maegaard et al. 1997. TEMAA – a test-
bed study of evaluation methodologies: Authoring
aids. http://cst.dk/projects/temaa/temaa.html.

K. Netter et al. 1998. DiET – diagnostic and eval-
uation tools for natural language applications. In
Proceedings of LREC 1998, pages 573–579, Gren-
ada.

M. Rajman et al. 1999. ELSE – eval-
uation in language and speech engineering.
http://www.limsi.fr/TLP/ELSE/.

J. Sjöbergh. 2003. Combining PoS-taggers for im-
proved accuracy on Swedish text. In Proceedings
of Nodalida 2003, Reykjavik, Iceland.

