
Robust Error Detection: A Hybrid Approach Combining
Unsupervised Error Detection and Linguistic Knowledge

Johnny Bigert and Ola Knutsson
Numerical Analysis and Computer Science

Royal Institute of Technology, Sweden
{johnny, knutsson}@nada.kth.se

Abstract

This article presents a robust probabilistic
method for the detection of context-sensitive
spelling errors. The algorithm identifies less-
frequent grammatical constructions and at-
tempts to transform them into more-frequent
constructions while retaining similar syntactic
structure. If the transformations result in low-
frequency constructions, the text is likely to
contain an error. A first unsupervised approach
uses only information derived from a part-of-
speech tagged corpus. This experiment shows
a good error detection capacity but also a high
rate of false alarms, in many cases due to phrase
and clause boundaries. In a second approach,
we combine the first method with robust phrase
and clause recognition to avoid many of the false
alarms in the first experiment. A comparative
evaluation of the experiments shows that the in-
troduction of linguistic knowledge dramatically
increases the precision of the error detection
method.

1 Introduction

Even though spell checkers are widely used
and commercialized, many spelling mistakes in
writer’s texts are still left for humans to iden-
tify. In this paper we focus on a category of
error types that we consider very difficult to
detect. One of these error types is the cate-
gory of so-called context-sensitive spelling er-
rors (e.g. Mays et al. (1991)). The other error
type that we are focusing on is erroneously split
compounds which are frequent in compounding
languages.
Several approaches have been proposed to de-

tect and correct context-sensitive spelling er-
rors. Most approaches operate on sets of
easily confused words and are based on con-
text features for each word in the confusion

set, such as word and parts-of-speech context
(Yarowsky (1994), Golding (1995), Golding and
Roth (1996)). Furthermore, some include part-
of-speech (POS) tag trigram information to
determine which candidate is the most likely
(Mays et al. (1991), Golding and Schabes
(1996)). A rule-based approach using machine
learning is given in (Mangu and Brill, 1997). Al-
though useful for detection and correction, these
approaches require a list of confusion sets pre-
dicted beforehand.
The main drawback with the algorithms men-

tioned for error detection is that they require
knowledge about the errors to be found. Of-
ten, such errors are not known in advance and
the errors predicted may not be sufficient. We
want to be able to detect errors from categories
of difficult spelling errors such as spelling errors
resulting in an existing word. Furthermore, we
would like something more general and robust.
In this paper we propose a probabilis-

tic method for detection of context-sensitive
spelling errors and erroneously split com-
pounds. The main contribution of this paper is
an approach to mitigate the problem of sparse
data. To this end, we use a novel combination of
existing techniques, such as POS tagging, shal-
low parsing and phrase transformations.
The basic idea is to identify rare sequences of

morpho-syntactic tags and by different meth-
ods determine if the sequences are rare due to
the sparse data problem or phrase- and clause
boundaries. If a rare sequence cannot be trans-
formed into a more frequent one using the meth-
ods, the sequence is considered to contain an
error. We have investigated the methods in two
experiments.
The first experiment is conducted with an un-

supervised method using only information de-
rived from a rather small part-of-speech tagged



corpus of 1 million words (Ejerhed et al., 1992).
To deal with the sparse data problem we use a
distance metric for part-of-speech tags (Bigert,
2002) in order to replace rare tags with tags
used in similar syntactic contexts.
The second experiment is using the method

described above, complemented with a robust
phrase and clause recognizer (Knutsson et al.,
forthcoming) in order to deal with phrase and
clause boundaries that often contain rare se-
quences of morpho-syntactic tags. Using the in-
formation of clause boundaries, clauses are used
as the unit for the error detection algorithm to
operate on. The phrase recognition is used to
transform rare phrase boundaries into more fre-
quent and by doing so avoiding false alarms.
The experiments have been conducted on au-
thentic texts written in Swedish.
In this paper, we focus on the detection of

errors and do not address the intricate problem
of error classification or correction.

1.1 Algorithm Outline
Part-of-speech tag n-grams have many useful
properties. As the n-grams are extracted from a
corpus representing the language, they capture
some of the language’s features. Because of the
limited scope of an n-gram, the extracted fea-
tures will contain only local information. Each
of these n-grams constitutes a small acceptance
grammar since it describes an acceptable se-
quence of n POS tags in the language. Alto-
gether, the n-grams form a grammar containing
local information about the acceptable gram-
matical constructs of the language. In contrast,
POS tag n-grams not in the grammar are con-
sidered ungrammatical. From these observa-
tions, we will construct a simple error detection
algorithm.
This naive algorithm has a few drawbacks, all

caused by the same problem: insufficient POS
tag data. The lack of data entails that many
grammatical constructs may never have been
encountered. In the POS tag case, we alleviate
this effect by using the n-gram frequency table
once again. From the frequencies we build a
matrix of syntactic distances between POS tags
called the confusion matrix of representatives.
The confusion matrix contains information on

how suitable one tag is in the context of another.
The matrix provides us with a means to replace
rare tags with more frequent tags. From this,

we construct an algorithm improving the naive.
This method is covered in Section 2.
The improved algorithm will still suffer from

the problem of sparse data, mainly due to
rare n-grams resulting from clause and phrase
boundaries. We approach this problem by
transforming rare phrase constructs to those
more frequent. The aim is that the transfor-
mation will produce a high-frequency n-gram if
the original construct was grammatical. This is
covered in Section 3.

2 Error Detection with no Linguistic
Knowledge

In this section, we present a probabilistic
method for detection of spelling errors, not re-
quiring any previous knowledge of error types.
The algorithm is based upon statistics from a
corpus of correct and balanced text.

2.1 Detection of Improbable
Grammatical Constructs

The POS tag n-gram table includes the fre-
quency of each n-gram. As indicated in the al-
gorithm outline, the n-grams constitute a local
grammar, and from that, we can devise a rudi-
mentary error detection algorithm. An imple-
mentation for trigrams is shown in Algorithm 1.

Algorithm 1: ProbCheck
Description: A first approach to a prob-
abilistic error detector
Input: A tag stream s̄k = (t1, t2, . . . , tk)
and a grammaticality threshold e.
Output: A set of indexes of ungrammat-
ical constructs if found, ∅ (the empty set)
otherwise.
ProbCheck(s̄k, e)
(1) I ← ∅
(2) foreach i in [2, k − 1]
(3) if TriFreq(ti−1, ti, ti+1) < e
(4) I ← I ∪ {i}
(5) return I

The text to be scrutinized must first be
tagged with a POS tag disambiguator. From
the resulting tag stream, each n-gram is looked
up in the n-gram frequency table. If the fre-
quency exceeds a pre-determined threshold, the
construct is considered grammatically sound.
Otherwise, it is a rare or incorrect grammati-
cal construct, and therefore improbable to be



the intention of the writer. Thus, the n-gram is
flagged as a potential grammatical error.
One serious problem concerning this ap-

proach is rare constructs due to insufficient data
and infrequent tags. An n-gram representing an
acceptable grammatical construct may not have
been encountered because of the rareness of the
tags participating in the n-gram. This effect
can be mitigated by using the confusion matrix
introduced next.

2.2 Sparse Data and the Confusion
Matrix

The idea behind the confusion matrix of rep-
resentatives is to find suitable representatives
for rare tags since rare tags often result in low-
frequency n-grams. We use an example to illus-
trate the problem with rare grammatical con-
structs from the previous section.
Say that we have encountered a sentence in

Swedish “Det är varje chefs uppgift att...” (It
is every manager’s responsibility to...). The
tag disambiguator has tagged the part “det är
varje” (it is every) with (pn.neu.sin.def.sub/obj,
vb.prs.akt, dt.utr/neu.sin.ind). A look-up in
the trigram frequency table reveals that this
particular trigram has never been encountered
before even though the construction is gram-
matically sound. This may be attributed to
the fact that one of the participating tags have
low frequency and in this example, the third
tag (dt.utr/neu.sin.ind) is rare with only 704
occurrences (0.07% out of a million words).
A language construct, very much similar in
meaning to the one above, is “det är en”
(it is a) with tags (pn.neu.sin.def.sub/obj,
vb.prs.akt, dt.utr.sin.ind). This small
change in meaning increases the individ-
ual tag frequency from 704 occurrences for
(dt.utr/neu.sin.ind) to 19112 occurrences for
(dt.utr.sin.ind). The trigram frequency rises
from 0 occurrences for (pn.neu.sin.def.sub/obj,
vb.prs.akt, dt.utr/neu.sin.ind) to 231 occur-
rences for (pn.neu.sin.def.sub/obj, vb.prs.akt,
dt.utr.sin.ind). We see that replacing
(dt.utr/neu.sin.ind) with (dt.utr.sin.ind)
reduces the problem with rare tags while re-
taining almost the same meaning. Explanation
of the tags used is given in Table 1.
The example indicates that we could benefit

from substituting a rare tag with a tag of higher
frequency suitable in the same context. If sub-

stituting tag t1 with tag t2, we shall call t2 a
representative for t1.
Even though a person can easily produce

a list of feasible representatives for each tag,
one problem is the order between the repre-
sentatives. Also, not all representatives are
equally appropriate given all contexts and thus,
a weight will be needed.
One approach to produce such a list is to use

the L1-norm and POS tag n-grams to measure
the distance between two tags (Bigert, 2002). If
we use trigrams as an example, the distance is
calculated as explained below.
We are given a tag t, a replacement tag t′ and

two context tags tL and tR. First, we normalize
the trigram (tL, t, tR) to obtain a fair compari-
son between tags of different frequency:

n(tL, t, tR) =
freq(tL, t, tR)

freq(t)
.

Second, we calculate the difference between the
normalized frequencies:

disttL,tR(t, t
′) =

∣∣n(tL, t, tR)− n(tL, t′, tR)
∣∣ .

Last, we consider all POS tag contexts:

dist(t, t′) =
∑

tL,tR

disttL,tR(t, t
′).

We get that dist(t, t′) ranges from 0 (where
the contexts are identical) to 2 (where the uses
of t and t′ are disjunct). From this, we calcu-
late the probability p(t, t′) of replacing t with
t′, where a probability of 0 is totally disjunct
syntactic uses and 1 means essentially the same
tag. We define the confusion matrix of rep-
resentatives ∆ from these probabilities by as-
signing ∆ = {p(ti, tj)} for all tags ti, tj . We
denote the m best representatives for a tag t
by r(t, 1), r(t, 2), . . . , r(t,m), where r(t, 1) is the
best candidate.

2.3 Weighted n-grams

Given the confusion matrix, we now have the
tools to replace rare tags with their represen-
tatives. When a tag n-gram of low frequency
is encountered, we want to determine whether
the low frequency is due to ungrammaticality
or merely the low frequency of the participating



tags. Hence, we want to determine whether sub-
stituting one of the tags may increase the fre-
quency. When substituting one tag with its rep-
resentative, we must take into consideration the
syntactic distance between the tags involved,
when calculating the new n-gram frequency re-
sulting from the switch.
For example, given the trigram (t1, t2, t3) with

frequency f = freq(t1, t2, t3), we use the tag r1
to replace t1. From the confusion matrix we get
a probability of q = p(t1, r1). A q of 1 would
imply that t1 and r1 are used in identical syn-
tactic contexts and thus, no penalty should be
imposed. A q < 1 implies that the use of t1
and r1 differs, and a penalty is in order since
there is a probability that the use of r1 in this
context may be less appropriate than the use of
t1. We calculate the new trigram frequency for
(r1, t2, t3) as f ′ = freq(r1, t2, t3) · q, that is, the
new trigram frequency penalized. If f ′ is above
a given frequency threshold, thus improving on
the old trigram frequency, the construct is con-
sidered grammatically sound.
When substituting more than one tag simul-

taneously we take into consideration all syn-
tactic distances involved by defining the com-
pound penalty w(t̄, r̄) =

∏n
i=1 p(ti, ri), where

t̄ = (t1, t2, . . . , tn), r̄ = (r1, r2, . . . , rn) and rj is
a representative for tj .
We now construct a measure of the probabil-

ity of grammaticality when given an n-gram tag
sequence. The intention here is to consider all
m representatives for each of the n tags in the
n-gram. (Note that the tag itself is included
among the representatives.) Each of these mn

new n-grams has a frequency which indicates
their individual grammaticality. This frequency
is weighted using the compound penalty above
to compensate for the syntactic distance be-
tween the tags and their representatives.

Definition: The weighted n-gram frequency of
an n-gram sequence t̄ = (t1, t2, . . . , tn) is defined
as

wfreq(t̄) =
∑

r̄∈R

w(t̄, r̄) · freq(r̄),

where R = {(r(1, i1), r(2, i2), . . . , r(n, in)}ı̄∈[m]n

is the set of all mn representatives for t̄.

The intuition behind the weighted frequency
is simply to attempt all different combinations
of replacements for the tags in the n-gram. We

will use the weighted frequency as a measure-
ment of the grammaticality of a sentence. If
the weighted frequency of any of the n-grams is
below a given threshold, that part is considered
ungrammatical.

2.4 The algorithm
The final algorithm is implemented for trigrams
in Algorithms 2 and 3. Algorithm 2 is very
similar to Algorithm 1 but utilizes weighted tri-
grams. In Algorithm 3, the compound penalty
is computed over R containing mn = m3 repre-
sentatives. For each representative, the penalty
w is computed on lines 5–6 and the trigram fre-
quency at lines 7–8.

Algorithm 2: ProbCheck
Description: The improved probabilis-
tic error detector
Input: A tag stream s̄k = (t1, t2, . . . , tk);
a grammaticality threshold e; a confusion
matrix of representatives ∆; representa-
tives Rm = {r(t, i)}, denoting the ith rep-
resentative of t where t is a POS tag and
where i = 1, 2, . . . ,m.
Output: A set of indexes of ungrammat-
ical constructs if found, ∅ (the empty set)
otherwise.
ProbCheck(s̄k, e,∆, Rm)
(1) I ← ∅
(2) foreach i in [2, k − 1]
(3) if WtTriFreq(ti−1, ti, ti+1,
(4) ∆, Rm) < e
(5) I ← I ∪ {i}
(6) return I

3 Error Detection Using Linguistic
Knowledge

The main problem with the probabilistic er-
ror detection is the fact that phrase and clause
boundaries may involve almost any POS tag n-
gram and thus, many n-grams may never have
been encountered. In this section, we make use
of phrases and clause boundaries to remove false
alarms resulting from such boundaries.

3.1 Clause and Phrase Recognition
The identification of clause and phrase bound-
aries is important for syntactic analysis. For
example, the recognition of clause boundaries
is an essential and repeated step in Constraint



Algorithm 3: WtTriFreq

Description: Calculate weighted tri-
gram frequencies
Input: A tag trigram t1, t2, t3. For ∆
and Rm, see Algorithm 2.
Output: The weighted trigram fre-
quency of the trigram provided
WtTriFreq(t1, t2, t3,∆, Rm)
(1) sum← 0
(2) foreach i1 in [1,m]
(3) foreach i2 in [1,m]
(4) foreach i3 in [1,m]
(5) penalty ←
(6)

∏3
j=1∆(tj , r(tj , ij))

(7) freq ← TriFreq

(8) (r(t1, i1), r(t2, i2), r(t3, i3))
(9) sum←
(10) sum+ penalty · freq
(11) return sum

Grammar parsing (Karlsson et al., 1995). In the
system described here the recognition of clauses
and phrases plays an important role. The er-
ror detection method proposed is independent
of how the recognition is accomplished. We have
chosen to implement a rule-based phrase and
clause identifier, even though an unsupervised
and probabilistic method would suffice. The
most important property is robustness.
For the detection of clause boundaries,

we have implemented Ejerhed’s algorithm for
Swedish (Ejerhed, 1999). This algorithm is
based on context-sensitive rules operating on
POS tags. One main issue is to disam-
biguate conjunctions that can coordinate words
in phrases, whole phrases and, most impor-
tant, clauses. About 20 rules were implemented
for the detection of clause boundaries in the
Granska framework (Domeij et al., 2000).
The module for phrase recognition should

identify the “best” phrase candidates and assign
them with the head’s feature values. For exam-
ple, a noun phrase of the type “den lilla pojken”
(the little boy) is assigned with the following
features and values: word class is noun, gender
is non-neuter, number is singular, species is def-
inite, case is nominative. This results in a valid
tag (nn.utr.sin.def.nom), corresponding to the
head “pojken” (the boy). The assignment must
result in one or more valid tags to be useful

to the probabilistic error detection algorithm.
Furthermore, some constructs may be removed
from the analyzed text (e.g. prepositional and
adverbial phrases), which is motivated by the
observation that removal of such phrases very
seldom violates the syntax of the language. The
rules implemented are liberal regarding the syn-
tactic agreement within the phrase. We have
chosen this strategy for several reasons. First,
we want to analyze sentences that may con-
tain one or more errors. Second, the linguis-
tic rules for agreement in Swedish contain some
problematic exceptions. Third, tagging errors
from the part-of-speech tagger could cause in-
sufficient disambiguation of phrase boundaries.

3.2 Phrase Transformations for Rare
n-grams

We aim to produce a sentence representation
without rare n-grams while retaining grammat-
icality and preferably meaning similar to the
original sentence. As explained in the previ-
ous section, every phrase may be replaced by
zero or more tags. Zero tags will remove the
phrase (e.g. adverbial or prepositional phrases)
and one or more tags will replace the phrase
with the head (e.g. noun and verb phrases).
The replacement of a phrase results in a longer
scope for the probabilistic error detector. Fur-
thermore, it replaces long and rare phrase con-
structs with the more common, minimal phrase
consisting of the head only.

Algorithm 4: PhraseProbCheck
Description: The phrase enhanced
probabilistic error detector
Input: A tag stream s̄ = (t1, t2, . . . , tk)
and a grammaticality threshold e.
Output: A set of indexes of ungrammat-
ical constructs if found, ∅ (the empty set)
otherwise.
PhraseProbCheck(s̄, e)
(1) I ← ∅
(2) foreach i in [2, k − 1]
(3) if ProbCheck(i, s̄) < e
(4) if not ClauseBound(i, s̄)
(5) if not nGramOk(i, s̄, e)
(6) I ← I ∪ {i}
(7) return I

An implementation of the phrase enhanced
probabilistic error detection for n-grams is given



in Algorithm 4. At line 3, the tag stream is
checked for grammatical errors. If no errors are
found, the sentence is considered grammatical
and the algorithm terminates. If a suspicious
n-gram is found, part of the sentence will be
subjected to further tests (line 5). The clause
boundary condition is checked at line 4 so that
detections adjacent to a clause boundary are not
reported as errors. In Algorithm 5, we seek
to resolve the problem with the rare n-gram
found. At line 1 we identify the phrases over-
lapping the n-gram at index i. From these, we
construct all combinations of phrases so that
no two phrases span a common POS tag in-
dex (line 2). Given one of the combinations,
we attempt to replace the participating phrases
with their heads (line 4). If the n-gram at in-
dex i in the new tag stream is approved by the
probabilistic error detection (line 5), we con-
sider the n-gram grammatically sound. If none
of the combinations result in an acceptable POS
tag n-gram, a grammatical error is reported at
line 7.

Algorithm 5: nGramOk
Description: The algorithm for phrase
replacement and removal
Input: An index i containing a rare n-
gram, a tag stream s̄ = (t1, t2, . . . , tk) and
a grammaticality threshold e
Output: True if the n-gram is gram-
matical, False otherwise
nGramOk(i, s̄, e)
(1) P ← OverlapPhrases(i, s̄)
(2) C ← CombinePhrases(P )
(3) foreach C in C
(4) s̄′ ← Replace(C, s̄)
(5) if ProbCheck(i, s̄′) ≥ e
(6) return True

(7) return False

The use of the algorithm is best illustrated
with an example (see Table 1 for an explanation
of the tag set). Say that we have encountered
the sentence “den lilla vasen p̊a hyllan är inte s̊a
ful” (the little vase on the shelf is not so ugly)
where the part “hyllan är inte” (shelf is not) is
tagged (nn.utr.sin.def.nom, vb.prs.akt.kop, ab).
The initial probabilistic test erroneously indi-
cates an error and we construct the phrases

overlapping the trigram centered at index 6 (see
Figure 1):

1. Np: den lilla vasen p̊a hyllan (the little vase
on the shelf)→ vasen (nn.utr.sin.def.nom)
(the vase)

2. Pp: p̊a hyllan (on the shelf) → remove

3. AdvP: inte s̊a (not so) → remove

1

2

3

3

3

1

2

vasenlilla på är inte så

notislittlethe

ful

onvase the shelf

3 4 5 6 7 8 9
den

1 2
hyllan

b) 2

c) 3

d) 1, 3

e) 2, 3

a) 1

uglyso

Figure 1: Combination of phrases overlapping
the suspicious trigram (highlighted).

4 5 6 9

1 2 3

1 2 3

b) den lilla vasen är inte så ful

c) den lilla vasen på hyllan är ful

d) vasen är ful

e) den lilla vasen är ful

a) vasen är inte så ful

(the little vase is not so ugly)

(the little vase on the shelf is ugly)

(the vase is ugly)

(the little vase is ugly)

(the vase is not so ugly)
vasen
(the
 vase)

vasen
(the
 vase)

1

6 7 8 9

6 9

2 3

6 7 8 9

6 9

Figure 2: The resulting sentences from the com-
binations in Figure 1.

From the phrases, we construct all combina-
tions as shown in Figure 1, where the combina-
tion (1, 2) is not included due to the overlap be-
tween the two phrases. The resulting sentences
are shown in Figure 2. Combinations a and b
both produce rare trigrams due to the adver-
bial construction “inte s̊a” (not so). Combina-
tion c removes the adverbial construction and
produces an acceptable trigram. Throughout
the replacements, grammaticality is retained,
even though the content of the sentence may
be somewhat altered, as seen in Figure 2.



Table 1: Explanation of the tag set used. The tag set comprises 149 tags.

noun (nn) pronoun (pn) verb (vb) determiner (dt) adverb (ab)
non−neuter (utr) neuter (neu) singular (sin) plural (plu)
definite (def) indefinite (ind) nominative (nom) genitive (gen)
present (prs) active (akt) copula (kop)
subject (sub) object (obj)

4 Experiments and Evaluation

The experiments reported here have been con-
ducted by using the Stockholm-Ume̊a corpus
(SUC) (Ejerhed et al., 1992), consisting of one
million words in Swedish. The corpus was used
for extraction of n-grams and training of the
POS tagger (below). The evaluation set con-
sisted of 20000 words of school essays written
by students, 16 to 18 years old.
The text was fully disambiguated using a

hidden Markov model POS tagger for Swedish
(Carlberger and Kann, 1999) with a perfor-
mance of about 96.4% on unrestricted text. The
tag set was a slightly modified version of the
tag set from the training corpus (SUC) and
comprised 149 tags. In a future setting, tag
sets of different size and detail will be consid-
ered. Clearly, the tag set will affect both the
tagger and the behavior of the error detection.
Preliminary results on the performance of the
shallow parser used for NP recognition is about
83.1% precision and 79.5% recall (Johansson,
2000). Performance when parsing other phrase
types is yet to be evaluated. Preliminary results
on the performance of the clause recognizer is
81.4% precision and 86.6% recall (not count-
ing clause boundaries at sentence boundaries)
(Hahne, forthcoming).
In the experiment setting, an interesting as-

pect is the number of representatives m to con-
sider for each tag. We conducted experiments
for several values but report only on the most
promising,m = 3. Another aspect is the thresh-
old for ungrammaticality for the weighted tri-
grams. This threshold can be set arbitrarily.
Higher threshold will yield higher recall.
We wanted to assess how linguistic knowledge

influences the performance of probabilistic er-
ror detection. To this end, the unsupervised
algorithm was compared to one using linguis-
tic knowledge in the form of clause and phrase

structure identification. We ran three experi-
ments for each algorithm to measure how the
detections and false alarms were affected by lin-
guistic knowledge.

4.1 Results

The distribution of errors resulting from the six
experiments is shown in Table 2. The error
types found by the algorithm are for example
spelling errors and spelling errors resulting in
an existing word, verb tense errors (such as us-
ing the infinite instead of present tense), split
compounds (such as ”kycklinglever” (chicken
liver) as opposed to ”kyckling lever” (chicken
is alive)), word errors (such as word order and
inserted or missing words) and style errors (such
as constructs not conforming to language norms
and missing commas).
An interesting observation is that the intro-

duction of linguistic knowledge dramatically re-
duces the number of false detections. The num-
ber of correct detections were also decreased but
not nearly to the same extent. For the first
experiment at threshold 1.0, the detections de-
creased to 1/2 of the original count (from 59
to 30), while the false alarms decreased to 1/8
(from 78 to 10) of the unsupervised count. In
the second test (threshold 4.0) the detections
decreased to about 2/3 (from 122 to 78) while
the false alarms reduced to about 1/6 (from
293 to 51) of the original count. The third
test (threshold 8.0) also decreased the detec-
tions to 2/3 (from 148 to 100) and the false
alarms dropped to 1/5 (from 428 to 94). From
Table 2, we note that the precision is doubled or
better in two of the three tests. The figures seem
to suggest that the use of linguistic knowledge
is promising in this context since it greatly re-
duces the false alarms compared to the decrease
in correct detections.
Another aspect of probabilistic algorithms is

how they relate to other algorithms. Most of



Table 2: Comparison between probabilistic error detection methods. Methods in columns denoted
unsup are unsupervised. Methods in columns denoted phrase make use of linguistic information.
The thr figure is the ungrammaticality threshold for the weighted trigrams. The figures in the table
are the number of detections while the figures in parentheses give the recall.

thr= 1.0 thr= 1.0 thr= 4.0 thr= 4.0 thr= 8.0 thr= 8.0
Category unsup phrase unsup phrase unsup phrase

Spelling errors resulting
in a non−existing word 25 (13%) 11 (5.5%) 50 (25%) 24 (12%) 59 (30%) 36 (18%)
Spelling errors resulting
in an existing word 9 (14%) 5 (7.9%) 15 (24%) 9 (14%) 19 (30%) 10 (16%)
Erroneously split compound 14 (18%) 7 (9.2%) 30 (39%) 24 (32%) 37 (49%) 26 (34%)
V erb errors 2 (29%) 1 (14%) 4 (57%) 3 (43%) 5 (71%) 3 (43%)
Word errors 4 (10%) 1 (2.6%) 9 (23%) 6 (15%) 12 (30%) 10 (25%)
Style 5 (12%) 5 (12%) 14 (33%) 12 (29%) 16 (38%) 15 (36%)
Detected errors, total 59 30 122 78 148 100
False alarms 78 10 293 51 428 94
Precision 43% 75% 29% 60% 26% 52%

the error types discussed here are not compa-
rable since other algorithms are not intended
to detect them. For example, confusion set
based methods (e.g. Yarowsky (1994), Gold-
ing (1995), Golding and Roth (1996), Mays et
al. (1991), Golding and Schabes (1996), Mangu
and Brill (1997)) is mainly concerned with com-
petence spelling errors. Thus, comparing de-
tection of performance spelling errors would be
unjust. We have not yet conducted comparative
tests on competence spelling errors (i.e. confu-
sion sets type errors), but are confident that the
above-mentioned methods are better suited for
this task.
On the other hand, the comparison between

the methods proposed here and rule-based error
detection systems (see e.g. Jensen et al. (1983))
may be of relevance. Preliminary tests with a
rule-based grammar checker for Swedish seem to
indicate that the overlap in detection is limited,
which is positive. This may suggest that they
can be used in a complementary manner.

5 Future Work

Representatives are not restricted to part-of-
speech tags. We will consider adopting this ap-
proach to representing phrase n-grams. This
would enlarge the scope of the local error
detection algorithms and give it a structural
overview.
We will also consider methods for classifica-

tion of the detections. This is necessary for at
least two reasons. First, a user-friendly system
should provide some sort of diagnosis for the
detections made. Second, if the error is success-
fully classified, it may facilitate the generation
of correction suggestions. Furthermore, exist-
ing correction methods may be applied to some
error types.

6 Conclusions

In this paper we have presented two experi-
ments with a robust probabilistic method for
detecting context-sensitive spelling errors. Re-
sults show that the unsupervised method has a
good error detection capacity but also a high
rate of false alarms. By combining the unsu-
pervised method with robust phrase and clause
recognition we can significantly improve the un-
supervised method.

References

J. Bigert. 2002. Automatic extraction of
POS tag distance metrics by using n-grams.
Manuscript.

J. Carlberger and V. Kann. 1999. Imple-
menting an efficient part-of-speech tagger.
Software–Practice and experience, 29(9):815–
832.

R. Domeij, O. Knutsson, J. Carlberger, and
V. Kann. 2000. Granska – an efficient hy-
brid system for Swedish grammar checking.



In T. Nordg̊ard, editor, Nodalida ’99 Pro-
ceedings from the 12th Nordiske datalingvis-
tikkdager, pages 28–40. Department of Lin-
guistics, University of Trondheim.

E. Ejerhed, G. Källgren, O. Wennstedt, and
M. Åström. 1992. The Linguistic Annotation
System of the Stockholm-Ume̊a Project. De-
partment of Linguistics, University of Ume̊a.

E. Ejerhed. 1999. Finite state segmentation of
discourse into clauses. In A. Kornai, editor,
Extended Finite State Models of Language,
chapter 13. Cambridge University Press.

A. Golding and D. Roth. 1996. Applying
winnow to context-sensitive spelling correc-
tion. In International Conference on Machine
Learning, pages 182–190.

A. Golding and Y. Schabes. 1996. Combin-
ing trigram-based and feature-based meth-
ods for context-sensitive spelling correction.
In Arivind Joshi and Martha Palmer, edi-
tors, Proceedings of the Thirty-Fourth Annual
Meeting of the Association for Computational
Linguistics, pages 71–78, San Francisco. Mor-
gan Kaufmann Publishers.

A. Golding. 1995. A Bayesian hybrid method
for context-sensitive spelling correction. In
David Yarovsky and Kenneth Church, edi-
tors, Proceedings of the Third Workshop on
Very Large Corpora, pages 39–53, Somerset,
New Jersey. Association for Computational
Linguistics.

H. Hahne. forthcoming. Utvärdering av en
satssegmenterare (in Swedish) (Evaluation of
a clause segmenter for Swedish). Master’s
thesis, Department of Linguistics, Uppsala
University.

K. Jensen, G. Heidorn, L. Miller, and L. Ravin.
1983. Parse fitting and prose fixing: getting a
hold on ill-formedness. American Journal of
Computational Linguistics, 9(3–4):147–160.

V. Johansson. 2000. NP-detektion – utvärder-
ing och förslag till förbättring av Granskas
NP-regler (in Swedish) (NP-detection – eval-
uation and suggestions for improvement of
Granska’s NP rules), Bachelor’s thesis, De-
partment of Linguistics, Stockholm Univer-
sity.

F. Karlsson, A. Voutilainen, J. Heikkilä, and
A. Anttila. 1995. Constraint Grammar.
A Language Independent System for Pars-
ing Unrestricted text. Mouton de Gruyter,

Berlin, Germany.
O. Knutsson, J. Bigert, and V. Kann. forthcom-
ing. Glass box evaluation of a robust shallow
parser for Swedish.

L. Mangu and E. Brill. 1997. Automatic rule
acquisition for spelling correction. In Proc.
14th International Conference on Machine
Learning, pages 187–194. Morgan Kaufmann.

E. Mays, F. Damerau, and R. Mercer. 1991.
Context based spelling correction. Informa-
tion Processing and Management, 27(5):517–
522.

D. Yarowsky. 1994. Decision lists for lexical
ambiguity resolution: Application to accent
restoration in Spanish and French. In Meet-
ing of the Association for Computational Lin-
guistics, pages 88–95.


