Implementing an efficient part-of-speech tagger

Johan Carlberger Viggo Kann
jfc@nada.kth.se viggo@nada.kth.se
Nada, Numerical Analysis and Computing Science
Royal Institute of Technology
SE-100 44 STOCKHOLM
SWEDEN

24th March 1999

Abstract

An efficient implementation of a part-of-speech tagger for Swedish is described.
The stochastic tagger uses a well-established Markov model of the language. The
tagger tags 92% of unknown words correctly and up to 97% of all words. Several
implementation and optimization considerations are discussed.

The main contribution of this paper is the thorough description of the tagging
algorithm and the addition of a number of improvements. The paper contains
enough detail for the reader to construct a tagger for his own language.

Keywords: part-of-speech tagging, word tagging, optimization, hidden
Markov models.

Introduction

In part-of-speech (POS) tagging of a text, each word and punctuation mark in the textis
assigned its morphosyntactic tag. Different tagging systems use different sets of tags,
but typically a tag describes a word class and some word class specific features, such as
number and gender. The number of different tags varies between a dozen and several
hundred.

Constructing an automatic part-of-speech tagger involves two problems:

1. tofind the possible tags for each word. This is easy to do if the word is in a word-
tag lexicon, but if the word is unknown, the possible tags have to be guessed.

2. to choose between the possible tags. This is cajedactic disambiguatign
and it has to be solved for each word that is ambiguous in its part-of-speech.
Ambiguous words are very common in most languages, for example the English
word setcan be either a noun, an adjective, or a verb.

The level of analysis needed for correct disambiguation varies from sentence to
sentence. To correctly disambiguate the ward, which is a noun inmake a turn herg
but a verb irl will turn off the E4 requires only syntactic analyses of the sentences. But

*To appear in Software Practice and Experience, 1999.

whetheroff in the second sentence is a particle or a preposition depends on whether
E4 is the name of a road or a device. Thus, 100% correct automatic tagging is a rather
impossible goal, since it requires full understanding of the text. Tagging accuracy in
different systems described in the literature varies between 95% and 98%.

There are several important language technology applications that may include
part-of-speech tagging as a first step, for example machine translation, information re-
trieval, and grammar checking. The applications require the tagger to be both efficient
(to tag fast, especially importantin information retrieval), and accurate (to tag correctly,
especially important in translation). In some applications it is not even enough to have
the text syntactically disambiguated ward sense disambiguatiémneeded, and that
is an even harder problem [1].

Part-of-speech taggers can be constructed in various ways, and different types of
taggers have different advantages. Taggers can be based on stochastic models (for ex-
ample [2, 3, 4, 5, 6, 7]), on rules ([8, 9]), or on neural networks ([10]) In a recent
paper, Samuelsson and Voutilainen claim that rule-based taggers can give higher tag-
ging accuracy than plain stochastic taggers on correct texts [11]. But hybrids between
rule-based taggers and stochastic taggers might be even better [12].

Some different stochastic models for tagging unknown words exist ([2, 4]). A good
survey of automatic stochastic part-of-speech tagging is [13].

In this paper we describe an implementation of a part-of-speech tagger for Swedish.
We wanted the tagger to be easy to implement, fast, language independent, tag set
independent, and that it should give high accuracy of tagging. We also wanted the
tagger to be able to cope with unknown words and grammatically erroneous sentences.
This ability is needed in various applications, such as grammar and spell checking.

Given these requirements, we chose to construct a stochastic tagger based on a
Markov model. Our goal was to achieve 95% tagging accuracy for known words and
70% accuracy for unknown words, and we both reached and surpassed the goal.

We use the tagger in a grammar checking program for Swedish, named<BA,
but we designed it to be as language independent as possible, and we think that it can
be used for most inflectional languages, for any tag set, and in any application needing
part-of-speech tagging. As it turned out, when incorporated imaNZ KA, our tagger
actually became a hybrid between a stochastic tagger and a rule-based tagger. For
certain complicated cases where the stochastic tagger could be wrong we use rules to
find the correct tagging.

The Tagging Model

Markov model

In this section we briefly describe the Markov model that is used as a stochastic model
of the language. A complete and excellent description of the equations used in the
standard Markov model for part-of-speech tagging is found in [2].

A text of n words is seen as a sequence of random variables= VWW.. . W,
and the corresponding tagging is also a sequence of random vafighlesT; T,. .. Ty.
A particular sequence of values\Wi_ (T1..n) is denotedwvy , (t1.n). The definition of
the tagging problem is then

T(w1n) =arg {?aP(tl,,n|w1,,n)7

where the operator arg max computes the tagging maximizing the probability, accord-
ing to the model, that word sequeneg ,, is taggeds n.
A second order Markov model makes the two assumptions

P(Wiltri,wii-1) = P(Wlt),
P(tift1i-1,W1i-1) = P(tifti-2,ti-1),
that is, the word itself only depends on its tag, and the tag only depends on the two
preceding tags in the text.
The tagging problem can now be formulated as
n

T(w1.n) = arg ma P(tilti—2,ti—1)P(Wi[t). 1)
N =
An unattractive feature of this formulation is that the quantiBes; |t;) are very small
and difficult to estimate. Since the reversed conditional probabiRigsv;) are much
more attractive in this respect, the following is a plausible alternative:
n
T(wyp.n) =arg 911? P(tilti—2,ti—1)P(ti|w;). (2)
e
Both these equations (and in particular, their corresponding first order Markov model
equations) have been used in different stochastic taggers, but in [2], the two equations
were compared, and Equation 1 was found to be significantly better when tagging texts
with quite a large training text
If all the probabilities are known, the optimal solution to the tagging problem us-
ing Equation 1 is most efficiently computed with dynamic programming using the so
called Viterbi algorithm[14]. This algorithm avoids the polynomial expansion of a
breadth first search by trimming the search tree at each level; see our implementation
in Figure 2. The time complexity of the algorithm is linear in the number of words to
be tagged.

Type of statistics used

In the rest of this paper we mean byward tokena specific occurrence of a word
in a text, as opposed toword type which means a lexically unique word. If no
misunderstanding is possible, we sometimes writevjiust.

Before the Viterbi algorithm can be used we have to give estimates of the proba-
bilities used in the Markov model. We obtain these estimates by collecting statistics of
a largetagged corpuswhich is a large text (typically consisting of a million words or
more) where each word token is tagged with its supposedly correct morphosyntactic
tag. From such a corpus we collect the statistics in Table 1 and compute estimates for
the probabilities as described in Table 2.

Designing a Tagging Algorithm

Modifying the Markov model equations

A problem with the probability distributions of Equations 1 and 2 is that the training
text is often too small to give accurate estimates (the sparse data problem). In this

INo theoretical justification for using (2) is known [2]. Note, however, that (2) is equivalent to including
the factorP(t;) in (1). Therefore, (1) gives preference to common tags in some cases where unusual tags are
more probable. In this sense (2) is more conservative.

Table 1:Statistics to be collected.

notation counting the number of

Ch all word tokensw

C(w) occurrences of the wona

C(w,t) occurrences of the wond tagged witht
C(t) occurrences of the tag

C(ty,t2) occurrences of thiag bigram(t, t2),

that is the tad; followed by the tad»
C(ty,to,t3) occurrences of thiag trigram (1,2, t3),

that is the tad; followed byt, followed byt
C(wi,tg,t2) occurrences of thevordtag-tag bigram(wy, t1,t2),

that is the wordwv; tagged witht; followed by the tad,
Ci(t) different word types tagged with tag
Ce(t) occurrences of capitalized words tagged with
Cm(Weng-3t) different word types ending with the samiettersw

and tagged with

Table 2:Estimates of the probabilities.

N C(ti) e C(wi—1,t_1,t)

Pt) = C_n P(tilwi—1,ti_1) = m
Ptifti-1) = Ziét(lti flt)') Pwilt) = zg\&)tl)
P(tilti2,ti-1) 7&'{' flt';l fzt)') P(tiw) = é\zv\;wt).)

section, we investigate some previously reported ways of smoothing and modifying
the probabilities and devise an equation for our tagger.

As reported in [2] Equation 1 gives significantly better results than Equation 2, in
our case 96.3% compared to 95.2%. A heuristic attempt to interpolate Equation 1 and 2
was investigated. This interpolation was accomplished at no extra cost in terms of effi-
ciency, since the lexical probability?(w;t;), or corresponding variant) for each word
is computed just once when constructing the lexicon the first time, as described in the
section Implementation Considerations. But as there was no significant improvement,
we decided to base our model just on Equation 1.

Astrém claims [15] that the following modification to the lexical probability did
enhance the tagging accuracy for another stochastic tagger using the same corpus:

Prew(W[t) = P(W[t)X,

where the optimum value for the parameéktevas 0.6. The effect of this modification is
that the probabilities of common word-tags are reduced, thereby making it easier for the
tagger to choose lexically less probable tags. Tests with our tagger gave an optimum
for k very close to 1 and with no significant improvement, so this modification was
discarded.

The tag trigram probability estima@t_,,t_1,t)/C(ti_2,ti_1) presents a problem,
since, unless a very large training text is used, the tag trigram and bigram counts will

be low, as was the case for our corpus (see Implementation Considerations). The com-
mon way to improve the model is to interpolate between the tag trigram, bigram, and
unigram probabilities. Hence, we redefine the trigram probability estimate as follows:

P -2,t-2) = M1 S A SR Ao, @

where the optimization parameters satiafy+ A2 +Az = 1. This modification im-
proves the model, but the tag trigram probabilities are still unreliable when the bigram
countC(ti_»,ti_1) are small. This effect can be reduced by makin@ function of the
number of such bigrams, so that the trigram contribution is stronger when the bigram
count is high. Experiments showed that

A =AoC(ti—2,ti-1)%,

where the optimization parameteiis about 0.2, gave a slight improvement.

Another problem with Equation 3 is that the trigram count and the two bigram
counts in it can be zero. We experimented with using small nunshietead of zero
to smooth the equation. It turned out that using a sieglestead of the trigram term
when it was zero or 0/0 worked fine:

C(ti—2,ti—1,t)
P(tijti—2,ti—1) = max()\oc(tiz,til)lq ,8) .

Another improvement of Equation 1 could be to condition the next tag on the previ-
ous word, as well as on the two previous tags. As pointed out in [13], such an extension
may not be a good idea, since the wordtag-tag bigrams will most likely be too sparse. A
manual inspection of the tagging errors, however, suggested that including wordtag-tag
bigrams could indeed enhance the performance.

Not surprisingly, no improvement of tagging accuracy was obtained when the fol-
lowing wordtag-tag bigrams term was added to Equation 1:

C(Wi—1,ti—1,t)
C(Wi—1,ti—1)

In an effort to reduce the bad influence of sparse data, the extra term was used
only for wordtag-tag-bigrams with a frequency higher than a certain limit. However,
there was still no improvement. We resorted to inspect the impact of each word type
occurring aswi_1 on the performance when used in the wordtag-tag bigram formula.
This experiment revealed that many word types worsened the performance, but a few
word types actually improved performance. Thus, we modified Equation 1 to condition
on the previous word (as well as the two previous tags) only when the previous word
has proved to improve performance on the optimization text:

P(ti|wi_1,ti—1) =

P(ti|wi—1,t—1,t—2) if wi_1 is a 'good’ word,

P(Wyi-1,tLi-1) = { P(tilti—2,ti—1) otherwise,

where words that improved the model are termed 'good’. The introduction of the
wordtag-tag bigrams modification of Equation 1 gave a 7% improvement of tagging
accuracy on the optimization text, but no significant improvement on the test text. A
much larger corpus than the one we use is required to be confident about the improve-
ment of the model, since many of the good words occur very few times in the test and
optimization texts.

Despite the failure of introducing word-bigrams, we still believe that it is possible
to select wordtag-tag bigrams that do improve the model, for example verb-particles
and verb-prepositions. We have not yet made such an attempt.

Using capitalization to improve tagging

In Swedish, all proper nouns should be spelled with an initial capital, and all other
words (not commencing a sentence) should be spelled with a noncapital initial. Thus,
the model could be modified to only select proper noun tags for capitalized words, but
since the capitalization convention is often not fully observed (as was the case in our
corpus), we introduced the following factor to Equation 1:

y1 if tis not proper-noun tag andis capitalized
Pe(w,t) = ¢ Yo if tis proper-noun tag and is not capitalized
1 otherwise.

The best performance was obtained with= 0.028 andy, = 0.044. (In the case for
unknown wordsy; = 0.020 andy, = 0.048.)

The maodification has the effect that an initial capital does not necessarily lead to
the word being tagged with a proper noun tag, and noncapitalized words may be tagged
as proper nouns. Tagging accuracy improved from 96.2% to 96.3% by RBsing

Thus, we use the following equation in our language model:

n
T(wy.) =arg pfaﬂ Pt (ti[ti—2, ti—1)P(wi |t) Pe(wi, t;), where 4)
N =

/ C(t; gt Cti_1.t Ct;_
Pt (ti[ti—2,ti—1) = max()\lﬁi%,e) +A2 ététiffi) +)\3—c—<t'nl)-

Markov model parameter optimization

The standard way to train a hidden Markov model is by maximum likelihood training
using the forward-backward algorithm, also known as the Baum-Welch algorithm [13].
This algorithm uses word type, rather than tag information, to iteratively improve the
probabilities of the training corpus. The advantage of this approach is that it does not
require the training corpus to be tagged.

If there is a tagged training corpus available, the probabilities in the Markov model
can be estimated using relative frequencies in the tagged text. This method is more
reliable, so we used it in our tagger. If there is an untagged corpus beside the tagged
corpus, one could try to improve the probabilities computed using relative frequencies
by a maximum likelihood training. We did not do this, because Merialdo has shown
that no improvement will occur if the tagged corpus is large enough [7].

As the tagging of unknown words described in the following section and the heuris-
tic modifications that we have introduced add several parameters to the original model,
standard optimization algorithms, such as the forward-backward algorithm, become
harder to use. Instead, we use a variant of simulated annealing. The initial parame-
ter values are set arbitrarily, and the optimum values, which give the highest tagging
accuracy of the optimization text, are determined by simple linear searches. Then the
values are slightly altered from the optimum, and the optimization is repeated. This
operation avoids the parameters getting stuck in local maxima. Although naive, the
method turned out to be quite practical, especially when new parameters are introduced
and evaluated during development. Also, the method does not put any restrictions on
the equation to be optimized.

Less naive than a linear search for the optimum parameter values would be to use
golden section search [16]. Such an algorithm was implemented, but the optimiza-
tion text proved too small to give high enough variation in tagging accuracy for the
algorithm to work properly.

Implementation of the Markov model

Before a text is tagged it must first be tokenized, i.e. each word and punctuation mark
must be identified. Tokenization is a not a trivial task, mainly because periods are used
in abbreviations and numbers, as well as full stops [17].

Using Flex we have implemented a simple tokenizer that is used by the tagger. As
the text is tagged and checked with error rules, the text may have to be re-tokenized.
As our corpus was already tokenized, the evaluated performance of the tagger is not
degraded by poor tokenization.

During tokenization, the text is divided into sentences, and then each sentence is
tagged separately. It makes little sense to cross sentence boundaries, as the correlation
between words and tags in adjacent sentences is often very weak. Also, as the scope of
the algorithm is only three words, very little information traverses sentence boundaries
anyway.

In the dynamic programming implementation of the Viterbi algorithm we need a
data structure, an object nam&igramGadget , for each position in the sentence to
be tagged. AlrigramGadget keeps track of the possible tags in a specific position,
the probabilities calculated so far for all combinations of tags of the two last positions,
and the best tag in the position before the last two.

When tagging a new sentence we first initialize an ageglget of TrigramGadget s
by setting the first two tags to a sentence-delimiter tag, as seen in Figure 1. The
sentence-delimiter tag is introduced to make the algorithm work properly. In the train-
ing corpus two such tags are inserted between every sentence in order to get proper
statistics.

TrigramGadget gadget{MAX_SENTENCE_LENGTH];
gadget[0].SetTags(sentenceDelimiterPseudoWord);
gadget[1].SetTags(sentenceDelimiterPseudoWord);

Figure 1:Initialization of the gadget used in the dynamic programming.

After initialization we walk through each word in the sentence and compute the
probability according to Equation 4 for each possible combination of tags for the tri-
gram ending with the current word. The best probability for each possible tagging
of the last two words is then stored gadget . When the end of the sentence is
reached, two sentence-delimiter tags are inserted, and then the algorithm works back-
wards through all positions in the gadget to retrieve the best tagging sequence. The
whole algorithm is found in Figure 2.

Tagging Unknown Words

A simple approach

When the tagger encounters an unknown word in the text, obviously Equation 4 can-
not be used straight away, since there is no statistical information gathered for that
particular word. But if we could in some way estimate a lexical probabRiiyv]t)
for unknown words, the lexical probabiliti€w]t) could be substituted big,(w]t) in
Equation 3 whenv is unknown.

A simple approach to estimalRg(w|t) would be to count the number of word types

TagSentence(Sentence *s) {
Word *wl = period;
for (int i=0; i<=s->NWords(); i++) {
TrigramGadget &g2 = gadget[i+2];
TrigramGadget &gl = gadget[i+1];
TrigramGadget &g0 = gadget[i];
WordToken &t = s->wordTokensi];
II' t contains the current word token and subsequently the chosen tag
Word *w2 = t.word;
SetLexicalProbs(w2, wl, *, g2);
Il assigns the possible tags and lexical probabilities of w2 to g2.
for (int u=0; u<g2.n; u++) {
const Tag *tag2 = g2.tag[u];
for (int v=0; v<gl.n; v++) {
const Tag *tagl = gl.tag[v];
probType best = 0;
for (int z=0; z<g0.n; z++) {
const Tag *tag0 = g0.tag[z];
probType prob = gl.prob[v][z]*tags.Pt1t2t3(tag0,tagl,tag2);
if (prob > best) {
best = prob;
g2.previu]lv] = z; // index in position O giving best probability

}
g2.prob[u][v] = best*tag2->lexProb;

}

wl = w2;
}
/I finally walk backwards through gadgets and extract best tag sequence:
Rewind(s, gadget+2);

}

Figure 2:Heart of the tagging algorithm.

Cnm(t) that have been tagged with tag the training text, and to use

zTetag sepm(r)

as an estimate. Using this estimatePpfw|t) results in 45.5% of the unknown words
being tagged correctly. We can do much better, however, by performing a statistical
morphological analysis of unknown words. Intuitively, by just looking at the last few
letters of a word, a fair guess of the syntactic functionality of that word can be made.
This is true for Swedish, English, and other inflectional languages.

Analyzing word-endings

Ideally, a morphological analysis of unknown words should be done by a program that
finds roots and suffixes of these words, for example as described in [2]. Devoid of such
a program, we examined a method that does not require any additional information
about the morphology of words than what we already have. We simply count the
number of word types with common endings of lengt@(weng-i,t), for each tag in

the tag set. The endings used are just all occurring word-endings of length ranging

from O toL. Then an estimate is made by

- C(Weng-ir t)
Ps(wlt) = qj- i 7
i) iZO I Y tetag selC(Wend-i, T)

whereq; are optimization parameters. Tagging accuracy increased with increasing
L, but no significant improvement was detected lfogreater than 5. By using this
estimate, an encouraging 88.7% of the unknown words were correctly taggdd.
actuallyPs with L=0, so we usé&, instead ofP,.

Analyzing compound words

Contrary to the English language, a large portion of Swedish words are compounds.
As compounds are frequent among unknown words, they deserve special attention. If
a successful decomposition of an unknown compound word can be made, we have
strong evidence of the correct possible tags for that word, since the last word form
in a compound determines its part-of-speech. & [18, 19, 20] an algorithm for
decomposing compounds into their word form parts was implemented.

Awaiting the incorporation of 8ava into the program, we use a simplified algo-
rithm that works in the following way: A possible compounds divided into two
parts with an optional letter “s” in betweem = wy(s?Wws. If a suffix ws of a word
w happens to be another word in the lexicon we use the lexical probabilitisstof
improve on the estimate &, for w. If the first partwy of the possible compound is
also a word in the lexicon, it is more likely thatis a compound than if the first part is
not a word in the lexicon. Contrary to tha&/a compound decomposer, this method
does not verify that the compound is correct, and it does not consider all possible ways
of compound construction. Thug; was defined as:

| asP(ws|t) if wsis a suffix ofw,
Ps(wit) = { 0 otherwise

IntroducingPs improved tagging accuracy of unknown words to 92.0%. Initially,
the compounds were categorized whether a prefix word was found or not, and using
different weightsas to reflect the assumption that a found prefix indicates a correctly
identified compound, but as there were very few incorrect analyses, this categorization
did not improve performance.

Resulting lexical probability

The finalP, was then defined as
Pu(w|t) = Pe(w|t) + Ps(wit).

In this approach to tag unknown words, both morphology and context are taken into
account. An experiment using an Astrém exponent (see Modifying the Markov model
equations) orP, in order to monitor the relative impact of morphology versus context
was carried out, but no improvement in performance was reached.

As a further optimization, the set of tags considered could be reduced, since about
half of the tags in the tag set are tags for function words (prepositions, determiners,
etc.). These classes of words can be considered closed, as the lexicon should contain
all such words. Consequently, only tags for content words (nouns, verbs, etc.) need to
be considered.

WhenPR, has been computed for all content tags, only the Betstgs are used in
Equation 4. WhemN was varied during optimization, tagging accuracy increased with
increasingN, but no significant improvement was detectedNogreater than 5. This
is good because Equation 4 takes time proportionhitfor each word to compute.

Implementation Considerations

In this section we discuss some problems of the corpus we used and some modifica-
tions to it. We also describe a number of implementation details concerning speed
and memory usage. For efficiency and portability reasons we chose to implement the
program in C++.

Selecting a corpus

The only currently available tagged Swedish corpus is the Stockholm-Umed Corpus
(SUC) [21], which made the choice of corpus easy. SUC consists of one million words
divided into 500 texts of 2000 words each. The tag set consists of 140 different tags.
As could be easily observed, the corpus was too small to give reliable tag trigram counts
for our model. The average count of occurring tag trigrams is merely 12, and no less
than 41% of the occurring tag trigrams occur just once. Furthermore, many tags in
the tag set have very few occurrences in the corpus (34 tags occur less than 100 times,
and 17 tags occur less than 10 times), which clearly makes statistical observations
unreliable.

The corpus was divided into a training part, an optimization part, and an evaluation
part. The optimization and evaluation parts consist of 14 000 words each.

Statistics were extracted from the corpus by usingukex utilities flex, tr, sort,
unig, cut, we, comm, and sed.

Modifying the tag set

To make the SUC tag set better suit our purposes, we decided to remap the tag set in
two ways. Firstly, we removed some of the least common tags by uniting two or more
tags into one single tag, thereby removing the most unreliable data. Also, reducing
the number of tags reduced the amount of information to be retrieved and stored in the
lexicon. Secondly, we introduced new tags when we thought the original classification
to be too coarse.

For example, in SUC there is no distinction between auxiliary vdr@have etc.)
and other verbg(n, eat etc.). These two types of verbs clearly have different syntactic
behavior, which motivates the introduction of a new tag for auxiliary verbs. Also, SUC
uses the same tag for cardinals in singuligrep (one), etc.) and plural(tva (two),
etc). Therefore, we introduced a number feature to the cardinal tag.

We restricted ourselves to only extend the tag set when the remapping of the corpus
can be made automatically. A remapping requiring manual inspection would mean too
much work.

The task of evaluating the impact of the modifications of the tags is rather time
consuming, since it involves building a new lexicon and optimizing the tagger. There-
fore, we confined ourselves to evaluate the impact of the total remapping of the tag set,
leaving us unaware of the quality of each single modification. The evaluation showed

10

that removing 14 tags and adding 5 new tags improved tagging accuracy by a modest
2%.

Adding extra words to the lexicon

No matter how large the training corpus, there will be a considerable amount of un-
known words in the texts to be tagged. Fortunately, we had access to Svenska Akademiens
Ordlista (SAOL), a word list containing about 100000 noncompound words, in most
cases word class classified [22]. By using and modifying an existing word form gener-
ator [20], all possible word forms were generated from each word base form in SAOL.
Then all generated word forms including the base form were assigned all possible SUC
tags, in order for these words to be included in the existing SUC lexicon. This extension
increased the number of known word-tags from 104 000 to 673 000.

There was one problem, however. We had no statistical information available to es-
timate the lexical probabilities of the SAOL-generated words, so by some other means
we had to estimate these probabilities. The same problem concerned unknown words
encountered during tagging of a text. The simple solution we chose was to make use of
the morphological analysis of unknown words described in section Tagging Unknown
Words. This analysis gives a probability distributiBg(w|t) over the tag set based
on the morphology of the word. As these probabilities in some way reflect how com-
mon different word forms are, it makes sense to make use of this estimate here. These
probabilities can be used straight away for SAOL words that were unknown to SUC.
However, SAOL word-tags consisting of a known SUC word, but an unknown tag for
that word, present a problem.

How can the existing lexical probabilities be extended with extra probabilities for
new tags in a good way? If the word count is high the existing lexical probabilities are
probably good, but not if the word count is low. The following heuristics showed to
increase the tagging accuracy for such words:

Pe(wit) if (w,t) only in SAOL,
Psuc+saol(W[t) = { &1Ps(W|t)/C(w)® if win SUC, (w,t) only in SAOL,
P(w]t) if (wt)in SUC,

whered; =~ 0.00008 andd,; ~ 0.02 are optimization parameters. The effect is that a
SAOL tagging of a word has greater influence for less common SUC words.

Adding all SAOL words and word-tags reduced the number of unknown word to-
kens in the test text from 6.6% to 5.2% and reduced the number of unknown word-tags
from from 0.53% to 0.30%. The tagging accuracy increased from 96.1% to 96.3%.
As the tagging accuracy of unknown words compared to that of known words is quite
good, no dramatic improvement of tagging accuracy can be expected by lexicon ex-
pansion.

A more economic way to use the SAOL word forms was to add only SAOL word-
tags for known SUC words. This approach, in combination with generating word-tags
for known SUC words that were not derived from SAOL, reduced the number of words
that had never been tagged with the correct tag in the training text from 0.53% to 0.15%,
and tagging accuracy increased from 96.1% to 96.3%.

Fast loading of lexicons

One of the design requirements for the tagger was that it should be fast, which also
means that the program must load its lexicon fast. The ideal situation would be that the

11

lexicon structures have no pointers or other references to memory locations. Then the
lexicon can be loaded in big chunks of data from files directly into memory. Avoiding
pointers completely, however, would be too impeding on the quality of the code, but
by avoiding dynamic structures when appropriate, very fast loading is possible.

Given the tagging model we use, the data collected from the training text can be
considered static, so there is no need for dynamic structures for the main lexicon. The
information about each word in the main lexicon is of equal size except the string of the
word and the number of different tags associated with the word. Allocating memory
for all word-strings and all word-tags at the same time is the obvious way to save space
and time.

Furthermore, word-strings likeadraganddrag share the last four letters and can
therefore be stored in the same location. The sharing of memory locations reduced
the total size of all word strings by 11%. Since the same lexicon structure is used for
storing statistics about word-endings, as described in section Tagging Unknown Words,
the total size of all word-ending strings was reduced by 31%.

When the main lexicon is stored to a file, the word-strings and word-tags are stored
in big chunks of data. The actual memory location pointer is also stored. When the
word-strings and word-tags are loaded again, they probably end up in a different mem-
ory location. In this case, all references from word-structures to word-strings and word-
tags are changed appropriately. This method effectively combines use of pointers and
high-speed storing and loading, but of course requires careful implementation to avoid
erroneous pointers.

Initially the main lexicon data is stored in a number of files created during the
extraction of statistics from the training corpus. When the lexicon is loaded the first
time, hash tables and other structures are constructed, and then the lexicon is stored
to a file in a “fast” format. This format is basically the memory contents and some
information of sizes and memory locations. The next time the lexicon is loaded, the
program automatically uses the fast formatfiles. The slow and fast loading modes allow
the original lexicon files to be in a convenient format, since there is no requirement for
speed during the initial slow loading. All subsequent loadings of the same lexicon will,
on the other hand, be very fast.

Further speed optimizations

The main lexicon words are stored in a static hash table, where the slots in the table
are the word-structures themselves, not pointers to word-structures. This design saves
one indirection for every look-up, and it saves one pointer for each word. Moreover,
the size of the table is the same as the number of words, which means no memory loss.
Collisions in the hash table are resolved by using one link per slot, where the link is an
index to another place in the table. This design does not use any pointers, and hence
the hash table itself can be responsible for fast storing and loading, provided that the
hash table objects themselves can be relocated in memory.

Hash tables require a hash function on its objects, and the simple hash function in
Figure 3 on the word-strings turned out to be satisfactory. Using this hash function,
the average number of collisions in the table is only 2.2, and the maximum number of
collisionsis 7.

The static hash table is used for the main lexicon words, wordtag-tag bigrams,
word-endings, tags, and tag trigrams. As unknown words are detected during tagging
they are stored in a standard dynamic self-resizing hash table.

12

int key(string *s)
{ int val = 0;
for (s; *s; s++)
val = (val >> 1) xor scatter[(uchar) *s];
return val;

}

Figure 3:Hash function used in the program. The arrsgatter is a function from
[0..255] to a random number [0..maxint].

We experimented with storing the key of each hash table object in the object to
avoid multiple computations of the hash function, both for words and for tag trigrams,
but it did not increase tagging speed.

In order to optimize speed, all optimization parameters are declared as constants
in the release-version of the program. Also, pre-computing mathematical expressions
where possible, for example the trigram probabilities and the lexical probabilities in
Equation 4, speeds up tagging.

One problem with Equation 4 is that when long sentences are tagged, the overall
probability will approach zero. This problem can be avoided by using log-probabilities
and transforming the equation to a sum of terms, or by normalizing the probabilities
half-way through a sentence when the probabilities grow too small. We chose the lat-
ter approach, since, when using 4 bytes for storing the probabilities, only very few
sentences required normalization, and none when 8 bytes were used. Also, using log-
probabilities would require the equations for unknown words to be transformed too,
which is not easily done. Alternatively, it would require the resulting probability dis-
tribution P,(w]t) to be logarithmized at run-time, which is quite time-consuming.

Applications of the Tagger

A probabilistic tagger can be used in many different applications. We discuss two
applications: grammar checking and spell checking.

Grammar checking

We constructed the tagger in order to apply it in a Swedish grammar checking program
called GRANSKA. As we conclude in the following section, the syntactic disambigua-
tion dramatically improved the quality of the grammar checking, with respect to both
the possibility of finding errors and to the false alarm rate.

The grammar checking algorithm discovers grammatical errors @siog rules
Each rule describes an erroneous construction in a notation that uses the part-of-speech
tagging of the text. Figure 4 shows an example of an error rule.

In such an application, the demands on the tagger are somewhat different than in
other applications.

Firstly, an incorrectly tagged word is not a problem if it occurs in a correct sen-
tence, unless the incorrect tagging triggers an error rule, but that is unlikely to happen.
Secondly, the tagger has to be able to tag text containing errors in some reasonable and
consistent way, such that it is possible to express the different types of errors in error
rules. We conjecture that, in general, stochastic taggers tag texts with errors better than
rule-based taggers.

13

x/wordcl=dt & spec=def/, % a definite article
ylwordcl=jj & gen=x.gen & num=x.num & spec=ind/, % an indefinite adjective
zlwordcl=nn & gen=x.gen & num=x.num & spec=def/ % a definite noun
-->//l['The adjective " y " does not agree with the noun " z//

}

Figure 4:An error rule in GRANSKA discovering an incongruence between an indefi-
nite adjective and a definite noun.

Interestingly, it is also possible to use the error rule matching to improve the tag-
ging. In cases where the stochastic tagger makes errors in a systematic way (for exam-
ple often tags the word asy instead ofz), we can write an error rule that recognizes
the erroneous tagging, re-tags the sentence forcing the taggerxatag and then
re-applies the error rules.

Such a correction rule could, for instance, be used to capture simple feature agree-
ments that cannot be captured by the Markov model, due to its short scope. For exam-
ple, our second order Markov model cannot decide whether thelrardris in singular
or plural in the sentenddagra mycket bra borgSome very good tables), because the
number of the last word is only revealed by the number of the first word. In such cases
it is a simple matter to construct a correction rule to help the tagger select the correct
tag.

Since this type otorrection rulesis a sort of rewriting rule similar to the ones
used by rule-based tagging algorithms, our tagger can be called a hybrid tagger using
both stochastic and rule based methods, something that is recommended as the best
technique to construct high-quality taggers [12]. An interesting difference between the
hybrid tagging approaches is that the tagger in [12] first uses rule based methods and
then stochastic methods, while our tagger first uses stochastic methods, then rule based
methods, and then perhaps new rounds of stochastic and rule based methods.

Unfortunately, we have not yet been able to evaluate the tagging obtained using
correction rules, but we think it would be a substantial improvement.

Probabilistic spell checking

With a working probabilistic tagger at hand, we have started to develop a probabilistic
spell checker. The spell checker identifies a suspicious sentence (using some measure
related to the probability obtained with Equation 4), makes changes to the sentence in
order to make it less suspicious, and if a good enough alternative is found, suggests
it as an alternative to the original suspicious sentence. This method captures not only
errors that “traditional” spell checkers findm, but also errors where the misspelled word
happens to be a word in them word list, or when adjacent are words interchanged, or
when a is omitted, or when a an extra word has slipped into the sentence by mistake.

If this application can be made successful enough, it could correct some types of
text errors normally taken care of by grammar checkers, and could thus be incorporated
into a rule based grammar checker. The spell checker we constructed successfully
identified and corrected the following incorrect versions of the sentégagar en bil
(I have a car):

14

Table 3:The tagging results.

sentences
words (including punctuation marks)

1006
16378

unknown words

hard words

correctly tagged sentences
correctly tagged words
unknown word errors

hard word errors

known word-tag errors

1085 (6.6%)
25 (0.15%)
602 (58.6%)
15775 (96.3%)
87 (14.4% of errors)
25 (3.9% of errors)
510 (84.6% of errors)

accuracy for unknown words 92.0%

accuracy for known words 96.6%

accuracy for all words 96.3%

Jag har en bik. (unknown wolulk)

Jag har en bi. (noubi causes incongruence)
Jag en har bil. (swapped words)

Jag har en har bil. (superfluous wdrdr)

Jag en bil. (missing verb)

Whether the spell checker can successfully correct more complicated sentences
remains to be investigated, but as the toy examples show, the method seems promising.

Evaluation of Performance

Speed and memory requirements

A main lexicon constructed from the statistics derived from SUC only uses 7 MB of
memory. A SAOL-extended SUC lexicon occupies 29 MB.

Using the SUC lexicon (containing 104 000 word-tag pairs), the tagger loads in
0.79 seconds and tags 26 900 words per second on a Sun Sparcstation Ultra 1. Using
both the SUC and SAOL lexicons (674 000 word-tag pairs), the tagger loads in 1.9
seconds and tags 22 600 words per second. Thus, there is almost no speed degradation
for tagging with very large lexicons.

Quiality of tagging

SUC consists of one million words divided into 500 texts of 2000 words each. We
have separated two randomly selected 14 000 word texts from this corpus, one for
optimization and the other for evaluation.

The tagging results are quite encouraging. Using Equation 4, we obtained a tagging
accuracy of 96.3%. In this text, 6.6% of the word tokens were unknown to the tagger,
and 92.0% of these words were tagged correctly, which is far better than our initial goal
of 70%. The results of the test text tagging are presented in Table 3.

An analysis of the incorrectly tagged words revealed that 14.4% were unknown
words, and the tagger made a bad choice. 3.9% were “hard” words, i.e. known words
that had never been tagged with the wanted tag in the training text. These words are
named hard because the current model cannot tag them correctly. In the remaining

15

84.6% of the errors the tagger made a wrong tag selection even though the word had
been tagged with the correct tag in the training text.

This analysis indicates that further work should primarily be concentrated to im-
proving the tagger’s choice between already known word-tag combinations. Of course,
an improvement of the tagging of one particular group of words also means a possible
improvement of the tagging of other groups, since the choice made for one word is
dependent on the choices for the surrounding words in the text.

Since only 3.9% of the tagging errors were due to previously unseen word-tags it is
not motivated to allow other than known tags (for each particular word) to be selected
when tagging known words (including tags not seen with the particular word in the
training text). Allowing all tags to be selected would slow down tagging and would
probably introduce almost as many, or more, errors than it would cure. However, if this
assumption is actually true remains to be investigated.

By extending the SUC lexicon with SAOL words, as described in Implementation
Considerations, the unknown words were reduced from 6.6% to 5.2%. The tagging
accuracy improved from 96.3% to 96.4%. This is a rather modest improvement with
respect to the cost; the lexicon size grows by a factor of four.

It is interesting to see if the language model we use allows the tagger to select
highly lexically improbable tags for ambiguous words. In the sent&fackborsakar
smartan i min vad?2What causes the pain in my calf?) the tagger correctly tags the
first occurrence ofadas a pronoun and the second occurrence as a houn. This tagging
is made despite the fact the&d was tagged as a pronoun 1850 times and as a noun
only 3 times in the training text. Apparently, the contextual information has a strong
enough impact on the model for the tagger to make a “daring” guess in this case.

Comparisons with other taggers

To be able to make relevant comparisons between different taggers, the same language,
tag set, training and test texts should be used. Since there are no reported tagging
results for the complete SUC that we know of, we can only estimate the capability of
our tagger compared to others.

The Umea tagger [15] uses a subset of 300 000 words of the SUC with a tag set
of 194 tags and reports a tagging accuracy of 97.5%. The algorithm used is derived
from the Volsunga algorithm [5] and uses the same type of statistical information as
our algorithm, but unknown words are treated in another way. For unknown words, the
Umead tagger “cheats” and chooses only between tags that have been used to tag each
unknown word in theest text Since most new word types are tagged with only one
tag in the test text, this way of treating unknown words corresponds to having almost
100% correct tagging of these words. Presumably, “hard” words are eliminated by the
Umead tagger in the same way as well. This discrepancy in approach means that tagging
accuracy for the two taggers cannot be compared.

Tagging speed, however, can be compared. The Umea tagger tags 500 words per
second, compared with our tagger, which tags 14 000 words per second, both on a Sun
Sparcstation 10.

Investigation of tagging errors

A manual inspection of the tagging errors of the optimization text words indicated
that, of the 500 errors, 50% seemed very hard to tag correctly, given the language

16

model used. Either a very long scope, understanding of the text, or other means of
disambiguation are needed.

Disappointingly, 10% of the errors were caused by incorrect tagging in the sup-
posedly correct SUC text. This fact indicates that the complete SUC contains 5000
incorrect taggings, an error rate of 0.5%. Another 10% of the errors could be ascribed
to inconsistent tagging in SUC or tagging errors in the training text. Too often, the
same words and constructions were tagged in many different ways, without any obvi-
ous reasons. This observation gives at hand that tagging error rate could be reduced
by 20% just by using a revised version of SUC. Correcting some errors in the test and
training texts improved tagging accuracy to 97.0%.

The remaining 30% of the errors were considered within reach of tagging cor-
rectly. However, these errors were of many different types, and hence would require
many different approaches for solving, each with a very small expected improvement.
For example, the inclusion of wordtag-tag bigrams in Equation 4 gave a very modest
improvement, if any, of the model.

Since the tagger will be used in a grammar checker, its performance on texts with
grammatical errors is of interest. In order to test this performance, a test text with 200
sentences with agreement errors was compiled from authentic texts. Examipén in
lilla huset(The small house) the determirdenshould bedet It was determined that
72% of the sentences were tagged in such a way that error rules could match the faulty
construction.

The error rules at hand, from the old version ak&iskA [23], detected 36% of
the faults. By using the same rules without doing a syntactic disambiguation, as was
done in old RANSKA, only 22% of the faults were detected. Also, without syntactic
disambiguation, 7 false alarms were generated, but none when the text was disam-
biguated.

Another test using 50 000 words from SUC and the same error rules gave 94 false
alarms without disambiguation, but only 8 with disambiguation. Apparently, syntactic
disambiguation is very important for grammar checking of Swedish text, as it increases
the possibility to discover errors, as well as it reduces false alarms.

Discussion

The major inherent limitation of the Markov model is its short scope. A second order
model cannot capture dependencies that span over more than three words. For example,
to determine whethererkis singular or plural irviolinkonserten ar hans mest kénda

verk (The violin concerto is his most known piece) would require a fifth order Markov
model, since it depends on the number of the first word in the sentence only. But,
as the required size of the training text grows exponentially in the order of the Markov
model, there will never be a large enough training text to avoid the sparse data problem.
Hence, other methods such as using correction rules are required.

The decision to employ a stochastic language model, however, has resulted in a
versatile tagger, which, as mentioned earlier, can be used for most languages and tag
sets and in most applications needing POS tagging. As we have not seen any reports on
taggers with greater tagging speed than ours, we believe it is a state-of-the-art tagger
in terms of speed. When we improve the tagger with error correction rules (see section
Applications of the Tagger), we hope to construct a state-of-the-art tagger in terms of
accuracy as well.

There exists a WWW version of our tagger, which anyone can test. The URL is

17

http://iwww.nada.kth.se/theory/projects/granska/

Acknowledgments

The work has been funded by the Swedish research councils TFR, HSFR and Nutek.

Sprakdata at Géteborg University and the Swedish Academy let us use Svenska
Akademiens ordlista as a source for words iRABISKA. Prof. Eva Ejerhed at Umea
University and Prof. Gunnel Kéllgren at Stockholm University let us use SUC. Ola
Knutsson carried out the manual inspection of the tagging errors and evaluated the
grammar checking performance.

References

[1] N. Ide and J. Véronis. Introduction to the special issue on word sense disam-
biguation: the state of the atf€omp. Linguistics24(1):1-40, 1998.

[2] E. Charniak, C. Hendrickson, N. Jacobson, and M. Perkowitz. Equations for part-
of-speech tagging. Ih1th National Conf. Artificial Intelligencepages 784—789,
1993.

[3] D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun. A practical part-of-speech tagger.
In 3rd Conf. Applied Natural Lang. Procespages 133-140. ACL, 1992.

[4] E. Dermatas and G. Kokkinakis. Automatic stochastic tagging of natural language
texts. Comp. Linguistics21:137-163, 1995.

[5] S. J. DeRose. Grammatical category disambiguation by statistical optimization.
Comp. Linguistics14:31-39, 1988.

[6] J. Kupiec. Robust part-of-speech tagging using a hidden Markov mGdehput.
Speech Lang6:225-242,1992.

[7] B. Merialdo. Tagging English text with a probabilistic mod€omp. Linguistics
20:155-171, 1994.

[8] E. Brill. A simple rule-based part of speech tagger. 3id Ann. Conf. Appl.
Natural Lang. Processingages 152—-155. ACL, 1992.

[9] A. Voutilainen. A syntax-based part-of-speech analyzer7tmConf. European
Chapter Assoc. Comp. Linguistiqggages 157-164. ACL, 1995.

[10] J. Benello, A. W. Mackie, and J. A. Anderson. Syntactic category disambiguation
with neural networksComput. Speech Lan@:203-217, 1989.

[11] C. Samuelsson and A. Voutilainen. Comparing a linguistic and a stochastic tagger.
In 35th Ann. Meeting Assoc. Comp. Linguistigages 246—253. ACL, 1997.

[12] P. Tapanainen and A. Voutilainen. Tagging accurately — don’t guess if you know.
In 4th Conf. Applied Natural Lang. Procespages 47-52. ACL, 1994.

[13] E. Charniak. Statistical language learning MIT Press, Cambridge, Mas-
sachusetts, 1996.

18

[14] A.J. Viterbi. Error bounds for convolutional codes and an asymptotically optimal
decoding algorithmlEEE Trans. Inf. Theorypages 260-269, 1967.

[15] M. Astrém. A probabilistic tagger for Swedish using the SUC tagset. Technical
report, Department of Linguistics, University of Umed, Umed, 1998.

[16] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterlinumerical
recipes Cambridge University Press, Cambridge, 1986.

[17] G. Grefenstette and P. Tapanainen. What is a word, what is a sentence? Problems
of tokenization. I3rd Int. Conf. Comp. Lexicographgages 79—-87, 1994.

[18] R. Domeij, J. Hollman, and V. Kann. Detection of spelling errors in Swedish not
using a word list en claird. Quantitative Linguisticsl:195-201, 1994.

[19] V. Kann. SravA’s home page, 199&ttp://www.nada.kth.se/stava/

[20] V. Kann, R. Domeij, J. Hollman, and M. Tillenius. Implementation as-
pects and applications of a spelling correction algorithm. In R. Koehler,
L. Uhlirova, and G. Wimmer, editorsText as a Linguistic Paradigm: Lev-
els, Constituents, Constructs. Festschrift in honour of Ludek Hrebidel
versitat Verlag, Trier, Germany, 1999. To appear. Available on WWW from
http://iwww.nada.kth.se/theory/projects/swedish.html .

[21] E. Ejerhed, G. Kéllgren, O. Wennstedt, and M. Astrém. The linguistic annotation
system of the Stockholm-Umea corpus project. Technical Report DGL-UUM-R-
33, Department of General Linguistics, University of Umed, Umed, 1992. The
web page of SUC isttp:/mwww.ling.su.se/DaLi/Projects/SUC/

[22] The Swedish Academy (Svenska Akademie@rdlista 6ver svenska spraket
(SAOL) Norstedts Forlag, Stockholm, 11th edition, 1986.

[23] R. Domeij, O. Knutsson, S. Larsson, K. Severinsson-Eklundh, and A. Rex.
Granskaprojektet 1996—-1997. Technical Report IPLab-146, Department of Nu-
merical Analysis and Computing Science, Royal Institute of Technology, Stock-
holm, 1998.

19

